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Ray-Tracing 
 
Ray stands for a light ray and to trace means to follow a track. Thus, ray-tracing means to follow the tracks 
of light rays, however in reverse direction. Based on the principle idea of ray-casting, ray-tracing is a very 
powerful method, which – in addition to correct visibility - can simulate some important optical effects: 
shading, shadows, reflections, light refraction. Due to the simplicity of this 
method even very complex objects such as freeform surfaces, fractal surfaces or 
any mathematical function, can be rendered. 
 

█ The Ray-Tracing Principle 
 
The basic idea is to trace the ray of light that hits a pixel on the screen in reverse 
direction (i.e. to analyse its origin) and to infer the pixel’s appearance from it.  
 
Correct Visibility and Shading 
Like in ray-casting a viewing ray (”primary ray“) is placed through every pixel and then intersected with all 
surfaces in the scene. From all the obtained intersection points the one closest to the screen is selected and 
the shading of that object point (as seen from the view point) determines the value for the pixel. Having 
done this for all points on the screen (i.e. in the simplest case for all pixels), we end up with a depiction of 
the scene in correct visibility. Any shading model can be used for this purpose, for example the Phong-
model. 
 
Shadows 
In order to calculate a surface point's shading we not only need its surface normal but also the directions 
towards all light sources. A light source has direct influence on the shading of a point only if its light is not 
obscured by other objects, i.e. if there are no other objects between the point in question and the particular 
light source. To determine this, we cast a shadow ray (that is a ”secondary ray“) from the point to be shaded 
to the position of the light source. Then we intersect this straight line with all objects in the scene and ignore 
this light source if we find an intersection point between the object and the light source. In this way all 
object parts in the shadow of a light source 
blocking object obtain less influence from the 
occluded light source than object parts which are 
directly visible from the light source. A shadow 
is automatically created by the light-occluding 
objects. 
 
Reflections 
If the viewing ray hits an object that is a mirror, 
the viewer doesn't see the object itself, but rather 
the object that is visible from the point of 
intersection along the direction of reflection. 
Since the law of reflection (incident angle equals 
emergent angle) is symmetric, the reflected 
object can be found by reflecting the viewing ray on the mirror-surface. Then we follow the reflected ray 
(also a “secondary ray“), i.e. again we intersect it with all objects in the scene and choose the closest 
intersection point. The new intersection point’s shading (as seen from the surface point on the mirror) is 
now what the original viewing ray sees. Note that the reflection is calculated locally, which means that 
curved mirrors can be rendered without additional expenditure. 
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Transparency 
Dealing with transparent objects is just as simple. If the first viewing ray’s intersection point is on a 
transparent object, from the viewing direction we see what the transparency ray (again a “secondary ray“) 
hits after having traveled through the transparent object. To simulate 
the correct behavior of light, it is not a problem to refract the ray at the 
transparent material according to the refraction law. The transparency 
ray is again intersected with all objects and the closest intersection 
point’s shading (from the direction of the transparency ray’s arrival) is 
assigned to what the original viewing ray sees. 
 
 
Recursion 
Except for shadow rays, every ray, i.e. every straight line representing a 
reversed light ray, is basically equal. For the action at that position it is 
irrelevant whether it is a primary or a secondary ray. In this way even 
multiple reflections and refractions behind transparent materials etc. are 
equally simple.  
 
Perspective 
The way primary rays are generated determines the projection of the 
scene to the view plane. When using parallel rays, orthogonal to the 
image plane, we obtain an orthonormal parallel projection. However, if 
we let the viewing rays emerge from a virtual eye point, we get a 
perspective projection. Note that in this way the perspective projection 
is generated naturally, without additional effort (apart from 
optimization procedures which take advantage of the parallel-ray-
property). 
 
 
 

█ Ray-Tracing Implementation 
 
Writing a ray tracer is fairly simple. All we need is a function that intersects a straight line with all objects 
and returns the closest intersection point.  
 

Ray-tracing pseudo-code: 
 
FOR all pixels P0 DO 
 1. calculate viewing ray from the eye through P0 
     intersect ray with all objects and choose closest intersection P 
 2. FOR all light sources L DO 
     intersect shadow ray P -> L with all objects 
     IF no intersection between P and L THEN shading += influence of L 
 3.IF P is on a reflective surface 
   THEN trace secondary ray; shading += influence of reflection 
 4.IF P is on a transparent surface 
   THEN trace secondary ray; shading += influence of transparency 
 
Usually the viewing coordinate system is set up so that the xy-plane is the 
image plane and the main viewing direction is along the negative z-axis. Rays 
are used in parameter form: starting point plus parameter times direction vector. 
 
So primary rays have the form: eye point + s·(pixel – eye point), 
Shadow rays have the form: surface point P + s·(light source position L – P), 
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Reflection rays have the form: P + s·R, where R = (2N·V)N – V is the reflection 
direction of viewing ray V, according to the law of reflection (incident angle 
equals emergent angle). This calculation also guarantees that R has unit length 
(see figure). 
 
Transparency rays have the form P + s·T, where T results from applying Snell’s 
law sinθi:sinθr = ηr:ηi  (ηr is the refraction index of material r): 
  
 
 
Vector T has unit length as well (see figure). 
 

 
When light rays are traced in reverse 
direction, as just explained, this 
generates a recursive function call 
sequence (see left figure), which 
corresponds to a “ray tree“ (see right 
figure). Nonetheless, usually this tree is 
not stored explicitly; it is just a symbolic 

representation of the recursive call sequence. 
 
 

█ Ray-Object Intersections 
 
Objects which shall be rendered with ray-tracing have to fulfill only few prerequisites:  

- it has to be possible to calculate an intersection point with a straight line, 
- the surface normal at the intersection point has to be known, 
- material properties (at this position) have to be available. 

For BReps this is naturally simple, but also for CSG-trees, which can be evaluated recursively. Fortunately 
also many other data formats fulfill these prerequisites (e.g. freeform surfaces). For each kind of primitive a 
function has to be provided which calculates the intersection with a ray. As an example, we are going to 
describe this for a sphere and for a polygon in more detail: 
 
Ray-Sphere Intersection 
Sphere equation: 
We substitute the ray’s 
equation for P: 
For better legibility we 
introduce ΔP: 
We obtain a quadratic 
equation: 
The 2 solutions correspond to 
the 2 intersection points with 
the sphere: 
 
In cases when r² << |ΔP|² (which happens quite often), the solutions of the 
equations suffer from numerical instability. To prevent that from 
happening, we can take advantage of the fact that u²=1 and rewrite the 
equation. The new equation 
is numerically more stable:  
 
 
Ray-Polygon Intersection 
When intersecting a ray with a polygon, we first test if the polygon is 
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front-facing in the first place (see Backface Detection). Then we substitute the ray equation P = P0 + s·u into 
the polygon’s plane equation Ax + By + Cz + D = 0 and since N=(A,B,C), we can also write it as N·P = –D: 
N·(P0 + s·u) = –D. From that we get s = –(D + N·P0)/N·u  which, 
when substituted into the ray equation, gives us the intersection point 
with the polygon plane.  
 
Now we must check if the intersection point actually lies within the 
polygon edges or outside the polygon boundary (see figure).  
 
 
 

█ Ray-Tracing Acceleration 
 
Ray-tracing is computationally very expensive. To render a scene with only 1000 polygons or objects to a 
1000x1000 pixel image plane requires 109 intersection calculations for the primary rays only, without 
optimizations. Therefore it is necessary to accelerate the technique significantly. The most important 
method to achieve this is to reduce the number of necessary intersection calculations by exploiting 
coherence.  
 
Bounding Volumes 
Before intersecting all parts of a more complex object (or 
some part of the scene) with a ray, it can be checked if the 
ray comes anywhere near to the object altogether. To 
accomplish this, bounding spheres, which enclose the 
whole complex object, are added to the data structure. 
Rays that do not intersect that bounding sphere will for 
sure not to hit the object, so no intersection calculations 
have to be performed with any of the object’s parts. This 
concept can be used hierarchically, i.e. complex subparts of objects may again have bounding spheres 
themselves and so on, until we reach simple objects. In this way the cost for the intersection tests can be 
reduced from O(n) to approximately O(log n). Instead of bounding spheres any other bounding volumes can 
be used, for example bounding boxes. Note that often there is a trade-off between better-fitting enclosing 
shapes and the effort for testing rays against this bounding volume. 
 
Space Subdivision Methods 
Alternatively, we can subdivide the whole space in which the 
scene resides with a regular grid. It does not make much 
difference whether the sub-cubes are stored in an array or in 
an octree. Now, only objects lying in the subspaces which the 
ray traverses need to be intersected with the ray. So we need 
a fast method to determine the next sub-cube along the ray 
path. 3D Bresenham algorithms lend themselves to this task. 
As soon as an intersection point in a sub-cube is found, the 
search for further intersection points can be stopped. 
 
For individual sub-cubes we can also apply the following 
procedure: 
The ray P = P0 + s·u enters the sub-cube at Pin. The normal vectors of the 
cube’s faces are (1,0,0), (–1,0,0), (0,1,0), (0,–1,0), (0,0,1), (0,0,–1). For the 
three faces with u·N > 0 (the other three faces are irrelevant!) we determine 
the intersection point with the ray and choose the closest one (smallest s). 
This method works also for cubes with varying sizes (as in octrees). 
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